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Modeling Practice, Performance, and Learning 

SUMMARY 

This paper presents the results from a study examining the relationship between practice, 
performance, and learning. We compared two versions of an intelligent tutoring system 
differing only in the number of problems that needed to be solved per problem set 
(Abbreviated = 3 problems, Extended = 12 problems). Our hypotheses were that Abbreviated 
subjects, in comparison to Extended subjects, would: (a) take less time to complete the tutor 
because they had fewer problems to solve, (b) perform worse on the posttest measures 
(accuracy and latency), and (c) demonstrate poorer transfer of knowledge and skills across 
tutor problems given fewer practice opportunities. We found that, while Abbreviated subjects 
did take significantly less time to complete the tutor than Extended subjects, both groups 
performed equally across all outcome measures. Componential skill analyses enabled us to 
track the course of skill acquisition during practice, and predict the degree of skill transfer 
afterward. We conclude with suggestions for the development of efficient automated 
instruction. 

Introduction 

The purpose of this paper is to examine the effects of practice on within-tutor performance 
and learning outcome. The relationship between practice and performance addresses the issue 
of how practice influences learning rates, errors, and the degree of successful transfer during 
the learning process (Singley & Anderson, 1986). And the relationship between practice and 
outcome addresses how practice affects what learners ultimately walk away with at the end of 
a learning task, including retention, application, and transfer to some novel task. Both of these 
relationships are believed to follow the well-documented tenet: "Practice makes perfect 
(Ackerman, 1988; Anderson, 1987; Bryan & Harter, 1899; Fisk & Rogers, 1992; Schneider & 
Shiffrin, 1977; Woltz, 1988) as well as the related tenet: When the number or variety of 
example problems is restricted, skill acquisition tends to be rapid, but transfer tends to be 
weak (Carlson & Yaure, 1990; Gick & Holyoak, 1987). In this paper, we submit both 
convictions to an experimental test to determine just how much practice makes perfect, what 
is weak transfer, and so on. 

Another relationship we are interested in exploring, but which is not so clear, exists 
between performance and outcome. It seems reasonable to assume that acquisition 
performance is a good indicator of "learning." However, Schmidt and Bjork (1992) have 
shown how, relative to a "standard" condition, practice environments that show little 
improvement, or even decreased performance during skill acquisition, may actually produce 
increased outcome performance. What is ultimately learned may therefore be poorly reflected 
by characteristics of acquisition. However, one way to examine the performance-outcome 
relationship is in terms of transfer. 

Transfer of skills can pertain to either learning performance or outcome data. One can 
transfer skills, problem-to-problem, during the learning process, or one can transfer skills 
from the conclusion of some learning task to a novel task. Gagne & Paradise (1961) have 
distinguished these two kinds of transfer (i.e., vertical and lateral) through a framework of 
skill hierarchies. Vertical transfer involves transfer from lower- to higher-level skills that exist 
in part-whole, prerequisite relationships to one another (e.g., transfer of learning between 



problem sets within a tutor where the curriculum has been hierarchically arranged). Lateral 
transfer deals with transferring abilities from one situation to another (e.g., transfer of learning 
from tutor- to posttest environment). If prerequisite skills are attained, then acquisition of 
more complex knowledge and skills would be expected. One may find, however, that even 
though the low-level skills have been successfully acquired, some learners may fail when they 
reach the complex skills. This problem can be corrected by presenting additional practice on 
the high-level skills (Smith, 1986). 

To illustrate how practice may differentially impact performance and outcome, we 
describe the results from a large-scale experiment using an intelligent tutoring system (ITS) 
teaching flight engineering skills. This study was designed to test practice effects using an ITS 
originally developed at the University of Pittsburgh (Lesgold, Bunzo, McGinnis, & Eastman, 
1989) then systematically altered at the Armstrong Laboratory to fit experimental objectives 
(Shute, 1993). Job components included collecting and analyzing information about a pending 
flight and deciding whether various factors (e.g., weather and runway conditions, type of 
plane) indicate a safe flight. There were two parts to the tutor's curriculum: (a) The Graph 
section, teaching the basic (component) knowledge and skills used by a flight engineer (e.g., 
reading and interpreting graphs), and (b) The TOLD (Take Off and Landing Data) Worksheet, 
requiring an integration of skills learned in the first section of the tutor.1 The tutor consisted of 
23 problem sets: 14 in the Graph section and 9 in the TOLD section. This paper focuses on 
the learning data from the Graph section of the tutor because it constituted the instructional 
portion of the tutor and produced more of a modeling challenge. That is, the Graph section 
contained a wide range of new knowledge and skills spanning 14 problem sets. A listing of 
each problem set, labeled G-l to G-14, is presented in Appendix 1. 

The tutor was manipulated to yield contrasting practice conditions, differing only in the 
number of problems the learner needed to solve in each of the problem sets. The version of 
the tutor consisting of many problems was called "Extended" (12 problems per problem set). 
And the version with fewer problems was called "Abbreviated" (3 problems per set). We 
believed that this ratio (4:1) provided a reasonable contrast between practice conditions. 
Twelve problems correspond to a typical number of problems presented in exercise sections 
of textbooks, and constitute a large enough number to examine learning curves. The solution 
of only three problems was believed to be a minimal number to support the acquisition of 
novel concepts and skills. 

The usual hypothesis from experiments varying practice schedules is that the 
manipulation will impact learning efficiency and/or outcome (i.e., large between-group 
differences in rate of skill acquisition or degree of attained skill). Thus, we hypothesized that 
subjects assigned to the Abbreviated condition would take less time to complete the tutor 
because there were considerably fewer problems for them to solve. However, these same 
subjects were not expected to perform as well on the posttest measures (accuracy and latency) 
compared with subjects learning from the Extended condition, who would have received 
considerably more practice in the problem-solving environment (lateral transfer). In addition, 
given fewer problem-solving opportunities, Abbreviated subjects were expected to show 
relatively weak vertical transfer of knowledge and skills across successive problem sets 
during tutor-learning in comparison to the Extended subjects. 

1 A detailed explanation of the individual problem sets for both the Graph and TOLD sections of the tutor can 
be found in Shute (1993). 



Findings from the Flight Engineering Study 

The effects of the two practice conditions were investigated in relation to learning time (hours 
needed to complete the tutor's curriculum), learning outcome (posttest latency and accuracy 
measures) and parameters of skill acquisition (errors and problem solving times during tutor 
learning). Approximately 370 subjects participated in the study, randomly assigned to one of 
the two practice conditions - Extended or Abbreviated. All subjects were obtained from a 
temporary employment agency, and paid for completing the study. None of the subjects had 
any formal training or experience with the subject matter instructed by the tutor. 

The first hypothesis was supported: Subjects in the Abbreviated condition required 
significantly less time to complete the tutor compared to subjects in the Extended condition 
(about 7 versus 12 hr, respectively, for total time on tutor; 4 versus 6.5 hr for Graph-section 
times). Notice that while the Abbreviated subjects received 1/4 the problems as the Extended 
subjects, they required more than 1/2 the amount of time to complete the tutor. Thus, the 
Abbreviated subjects spent relatively more time per problem than the Extended group. This 
will be examined in more detail in the section of this paper on "Performance Differences 
Between Conditions." 

The second hypothesis tested whether subjects in the Extended condition would perform 
better on the posttest than subjects in the Abbreviated condition, given their additional 
problem-solving opportunities. This hypothesis was not supported: Subjects in the 
Abbreviated and Extended conditions performed equally on both percent correct and latency 
data for all outcome measures. Table 1 shows the accuracy and latency measures, per group. 

Table 1 
Differences in Outcome Measures by Practice Condition 

TEST/MEASURE ABBREVIATED EXTENDED SIGNIF 

Percent Correct 
Declarative Knowledge 61.4(23.8) 61.0(24.1) NS 
Procedural Knowledge 46.9(22.6) 48.6(24.2) NS 
Procedural Skill 62.8(19.3) 65.7(19.4) NS 

Latency (mean sec. per item) 
Declarative Knowledge 15.3(06.3) 14.4(06.5) NS 
Procedural Knowledge 25.6(12.2) 24.3(09.6) NS 
Procedural Skill 20.8 (07.8) 20.1 (08.1) NS 

Note. Means are presented with standard deviations in parentheses. 

This unexpected finding prompted us to conduct a more fine-grained analysis of the data. 
First, we sought to determine whether these findings were due to the posttest being an 
insensitive measure of knowledge and skill acquisition (e.g., restricted range, ceiling or floor 
effects). Next, we decomposed the tutor's problem sets into component skills, and examined 
subjects' performance data in relation to those low-level skills. Finally, the component skills 
were used as building blocks for modeling performance and learning data. In the following 
sections, we describe these steps. 

Quality of the Posttest 
The first issue concerns the psychometric properties of the posttest (i.e., reliability and 
validity measures). The posttest was designed to measure the acquisition of tutor-specific 



(flight engineering) knowledge and skills, and was divided into three parts: Declarative 
knowledge, Procedural knowledge, and Graph reading and interpretation of various charts 
(i.e., Cartesian coordinate, Polar coordinate, Maximum Allowable Crosswind, and Wind 
Components — a Polar coordinate chart superimposed on a Cartesian coordinate chart). 
Declarative knowledge items related to definitions of relevant concepts learned from the tutor 
(e.g., What is a headwind? The relative wind direction is a function of what two 
components?). Procedural knowledge questions required subjects to apply different rules, in 
their proper sequence (e.g., If the relative wind direction is 100 degrees, what is its wind type 
and normalization value?). For the graph interpretation section, subjects were shown specific 
graphs that were used during the tutor, and were required to solve problems relating to those 
graphs. The posttest was made up of 46 items, and was administered on the computer in a 
multiple choice format, with six alternatives to choose from. Chance performance was thus 
17% for each of the three parts. 

We conducted an item analysis on the posttest data and found neither ceiling nor floor 
effects, or any group differences for any of the items (note: the data were analyzed altogether, 
as well as separately, by condition). The items turned out to be good discriminators of 
acquired knowledge and skill (i.e., none were too difficult or too easy); each item showed 
about a 50% accuracy level. We also found the test to be a reliable measure: odd-even 
reliability = .85, overall. To test the validity of the posttest, we compared specific error-type 
data from the tutor (e.g., errors dealing with incorrect use of the Wind Components Chart) 
with a comparable categorization of posttest items (e.g., items dealing with the use of the 
Wind Components Chart). Correlations between the tutor-error and outcome data were high 
(Graph-section r = .70; TOLD section r = .74). Finally, we examined whether subjects 
actually learned anything from the tutor. Chance performance on the posttest = 17%, and the 
posttest data were normally distributed with a mean of 58% (SD = 21). Although we did not 
collect pretest data from the current group of subjects, we did collect pretest data in another 
study using the same tutor and subjects from the same population of temporary service 
employees. In that study, pretest Mean = 38% (SD = 11.5; N = 90) and posttest mean = 58%, 
the same as this population's mean. So, most subjects did appear to learn from the tutor, 
compared to chance performance as well as to a similar group's pretest — posttest data. 

We next examine within-tutor data to see whether the Abbreviated subjects performed 
differently from the Extended subjects during skill acquisition to possibly explain the 
outcome results. 

Performance Differences Between Conditions: Latency and Accuracy Data 
We summed subjects' latency data as well as their accuracy data across the first three 
problems for each of the 14 problem sets. The first three problems were ones that both groups 
had to solve, so this sum represented performance data on mutual problems (i.e., Abbreviated 
subjects only solved three problems, while the Extended subjects solved three, then an 
additional nine problems, per problem set). Items were randomly administered to subjects; 
thus for the Extended subjects, the first three problems may not have been identical to the 
problems given to the Abbreviated subjects. These data are shown in Figure 1 (latency and 
accuracy data. 
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Figure 1 
Latency and Accuracy Data from Problem Sets in Graph section of the Tutor 

Latency data from the tutor showed that, for the more difficult problem sets (i.e., G-6, G- 
9 through G-13), Abbreviated subjects required more time on their three problems compared 
to the Extended subjects. But was there any evidence of a speed-accuracy tradeoff? That is, 
were the Abbreviated subjects more accurate on problems in which they had taken more time? 
In both conditions, subjects needed to answer a problem correctly before progressing to the 
next problem within any given problem set. For example, in the Abbreviated condition (with 
only three problems to solve per problem set), a subject could answer problem 1 incorrectly, 
then try again and answer it correctly. Similarly, the subject could answer problem 2 
incorrectly then correctly. And finally, the subject could answer problem 3 correctly on the 
first trial. That would translate into a "percent correct" score of 60% for that problem set: 3 
correct out of 5 attempts. The same scoring scheme was used for subjects in the Extended 
condition. The answer to the speed-accuracy tradeoff issue was no: wherever significant 
latency differences appeared between groups, subjects in the Abbreviated condition were also 
less accurate on these problem sets compared to the Extended subjects. 



We then investigated performance data in terms of relative degree of transfer 
demonstrated per group, across problem sets. Learning curves were compared and the findings 
were as follows. First, both groups demonstrated roughly parallel learning curves across 
problem sets, where latencies and accuracies predictably increased or decreased (shown in 
Figure 1). That is, when a problem set introduced a lot of new knowledge and skills (e.g., G- 
10), latencies and errors increased dramatically, per group (albeit, somewhat more 
dramatically for the Abbreviated group). Similarly, when a problem set involved knowledge 
and skills that had already been acquired, subjects' data in both groups showed decreases in 
latency and increases in accuracy (e.g., G-13). These findings suggest a comparable degree of 
vertical transfer for both groups. Next, we attempt to model these data to see just how 
predictable they are. 

Componential Skill Analysis and Modeling of Data 
Appendix 1 lists the 14 problem sets of the Graph section of the tutor, arranged into four 
categories based on similar knowledge and skills: (a) Conversion Scales (G-l, G-2, G-3), (b) 
Cartesian Coordinate Grids (G-4, G-5, G-6,G-14), (c) Polar Coordinate Charts (G-7, G-8, G-9, 
G-10), and (d) Wind Components Charts (G-ll, G-12, G-13). Within each category, problem 
sets increased in difficulty due to: stricter mastery criteria, inclusion of new knowledge and 
skills (both quantity and difficulty levels), or whether the problem represented an analog to 
previous problem sets in the same cluster. In this section, we decompose problem sets into 
their component skills, and model the within-tutor performance data as a function of skill 
acquisition status (i.e., classification of component skills as being learned, not learned, or 
unknown). We also attempt to model posttest performance based on tutor performance data 
(i.e., predict how an individual will perform on individual posttest items given the items were 
classified the same as tutor problem sets). 

Componential Skill Analysis. Before making specific predictions of within-tutor 
performance and learning outcome data, we analyzed the degree to which problem-set clusters 
contained overlapping skills. High correlations among component skills within the same 
cluster could explain the vertical transfer evidenced by both groups, as well as validate the 
tutor's rationally-designed curriculum. Intercorrelations were computed on the latency data, 
and the mean correlations by problem-set cluster were: Conversion Scale Problems: 0.35**; 
Cartesian Coordinate Grid: 0.47**; Polar Coordinate Chart: 0.42**; and Computing Wind 
Components: 0.40** (** N = 364; p < .001). The accuracy data showed a similar pattern and 
magnitude of correlations. Thus, these correlations suggest that there are overlapping skills 
among problem-set clusters. 

To confirm the existence of shared skills, we decomposed each problem set into its 
component skills, defined in terms of new, as well as previously introduced skills. This listing 
can be seen in Appendix 1. Notice that quite a few problem sets, especially within the same 
cluster, contain the same skills (e.g., Apply vertical and horizontal rulers in the Cartesian 
Coordinate Grid cluster). Altogether, we established 25 unique skills across problem sets (see 
bottom section of Table 2, "List of Unique Skills"), and there were 9 skills, on average, per 
problem set (note: earlier problem sets had fewer skills compared to later, more difficult 
problem sets). 



Table 2 
Matrix of Skills and Accuracy Data for Example Subject (R.J.) 

SG4IE CONVERSIONS CARTESIAN COORDINATE POLAR COORDINATE WIND COMPONENTS 

M    (H    M GJ4    &5_    ££     G-14 G=Z G£    G=2    O-10 G-ll      G-12     G-13 

PC (%) 100     100     100 100     100      14        75 75 100     100      75 8          22         29 

Skill 
1 1      1      1 0         0         0         0 0 0        0         0 0           0           0 

2 1      1      1 0         0         0         0 0 0        0         0 0           0           0 

3 1      1      1 110          1 0 1        1          1 1            1            1 

4 1      1      1 0         111 1 0        1          1 1            1            1 

5 0         0         1 0         0         10 0 0        0         0 0           0           0 

6 0         0         0 110          1 0 0        0         0 1            1            1 

7 0         0         0 1111 0 0        0         0 0           1           0 

8 0         0         0 1111 0 0        0         0 1           0           1 

9 0         0         0 10         10 0 1         1          1 1            1            1 

10 0         0         0 0         10          1 0 0        0         0 0           0           0 

11 0         0         0 0         0         10 0 0        0         0 0           0           0 

12 0         0         0 0         0         10 0 0        0         0 0           0           0 

13 0         0         0 0         0         10 1 0         1          1 1            1            1 

14 0         0         0 0        0         0         0 1 0         1          0 1            1            1 

15 0         0         0 0        0         0         0 1 0        0       - 0 0           0           0 

16 0         0         0 0         0         0         0 0 1      1       1 0           0           0 

17 0         0         0 0         0         0         0 0 1      1       1 1        1        1 

18 0         0         0 0         0         0         0 0 1      1       1 1        1        1 

19 0         0         0 0         0         0         0 0 0        0          1 1        1        1 

20 0         0         0 0         0         0         0 0 0        0          1 1        1        1 

21 0         0         0 0         0         0         0 0 0        0          1 1        1        1 

22 0         0         0 0         0         0         0 0 0        0         0 1        1        1 

23 0         0         0 0         0         0         0 0 0        0         0 1       1       1 

24 0         0         0 0         0         0         0 0 0        0         0 1        1        1 

25 0         0         0 0         0         0          1 0 0        0         0 0           0           0 

List of Unique Skills 

1. Find given value on conversion scale 
2. Read to other side for equivalent value 
3. Interpolate/determine value 
4. Input value 
5. Concept: altimeter setting 
6. Cartesian coordinate chart 
7. Use vertical ruler 
8. Use horizontal ruler 
9. Plot point at intersection 
10. Straight-line graph 
11. Correction table (correcting pressure altitude) 
12. Separate altimeter setting into x/y coordinates 
13. Compute value 

14. Relative wind direction (RWD) 
15. Determine wind type (via rales) 
16. Polar coordinate chart (PCC) 
17. Plot vector 
18. Locate arc 
19. Quartered, symmetric PCC (folded in 1/2, 1/4) 
20. Normalize RWD 
21. Draw new vector on chart 
22. Wind components chart (Cartesian + Polar) 
23. Gust element (add to TW & XW vel., not HW) 
24. Extraction location (HW/TW - y, XW - x axis) 
25. Locate given RCR on chart 

Table 2, above, displays an example of one subject's matrix ~ 25 skills by 14 problem 
sets. Matrices were created for each subject, containing a series of l's and 0's denoting 
whether a skill was present (required) or absent (not required) for that particular problem set. 
For example, problem set G-l only required skills 1 - 4. Therefore, values in the G-l column 



of this matrix contained l's for skill 1 to skill 4, while the remainder of the cells contained O's. 
We also included problem-set accuracy (percent correct) data in each matrix (row 1). 

Three "status categories" of skills were specified - learned (L), not learned (N), and 
unknown (U). The way in which skills were classified and then used to predict success or 
failure in subsequent tutor problem sets and posttest problems was as follows. First, we 
examined individuals' tutor performance data (accuracy) for any instance(s) of problem-set 
mastery. For example, the earliest occurrence of a score of 100% on a problem set would 
indicate that the individual most likely knew the associated skills. The subject would thereby 
receive a set of tentative L's for those skills required by that problem set (pass 1). If the 
following problem set required the same skills, and the subject again demonstrated 100%, 
then the shared skills would all be assigned L's (pass 2). Working forward, all subsequent 
problem sets containing these skills would also receive designations of L. A skill received a 
"not learned" (N) classification if, for example, two problem sets contained all but one skill in 
common. If the learner's score on the first problem set was 100%, but was less than 100% on 
the second problem set which contained the new skill, that skill would be classified as N. 
Subjects' data that did not have 100% on any of the 14 problem sets were problematic (but not 
impossible) to model. These individuals' data (note: only 30 out of 370 subjects did not have 
100% on any problem set) would start out with a lot of unknown (U) status skills. Beginning 
with the highest obtained accuracy and working backwards and forwards (i.e., deductive and 
inductive reasoning) through the problem sets, we could begin to make L and N assignments 
to those unknown skills, as well. We now illustrate the modeling procedure, predicting within- 
tutor, then posttest performance data. 

Modeling Within-tutor Performance. We randomly selected a subject's data. "Random 
Joe" (not his real name)2 performed at 100% accuracy on the first five problem sets of the 
tutor (see Table 2, above). Consider his performance data for the first problem-set cluster 
(Scale Conversion problems: G-l, G-2, G-3). Because the first 100% occurred at G-l, and he 
also acquired skills from the second problem set at 100% accuracy, we designated all four 
shared skills as L. Regarding intra-cluster predictability, G-2 required the exact same skills as 
G-l, but had a stricter accuracy criterion. Our prediction was that G-2 should be slightly less 
than (or equal to) 100%. In fact, Joe's actual G-2 score was 100%, showing that he could 
handle the more stringent criterion. Next, G-3 required the same four skills as in G-l and G-2. 
However, G-3 represented an analog problem to G-l and G-2 (i.e., the skills were the same, 
but the subject matter was different). The subject matter introduced in G-3 involved altimeter 
settings, so this problem set had an additional skill requirement (Skill 5 = U). We predicted 
that Joe would score slightly less than (or equal to) 100% on G-3 because (a) it was an analog 
problem with one additional skill requirement making it harder than G-l and G-2, and (b) he 
had already demonstrated mastery on four (out of five) required skills. It turns out that Joe, 
again, performed at 100% accuracy on this problem set. Because he had successfully acquired 
skills 1-4 (and tentatively acquired skill 5), we designated those skills as L in all subsequent 
problem sets including them.3 

The same analysis was employed on problem sets G-4, G-5, G-6, and G-14 
representing the Cartesian Coordinate Grid cluster. Joe scored 100% on problem sets G-4 and 
G-5, so we designated the shared skills (6, 7, 8) as L within these two problem sets, as well as 

2 Random Joe had been assigned to the Abbreviated condition, and was randomly selected out of 364 cases. 

3 Skill 5 was not required for use again until problem set G-6. Because skill 5 had received a "Tentative L" assignment, 
and Joe's accuracy score for G-6 was 14%, the tentative status for skill 5 remained. 

8 



in all subsequent problem sets. Skill 9 (Plot point at intersection) was a partially-shared skill. 
That is, it was first required in problem set G-4, and because Joe was 100% at G-4, skill 9 
received a tentative L. However, because skill 9 wasn't needed in G-5, and in G-6 (where it 
was next needed), Joe did not perform very well, skill 9's tentative status remained (note: it 
wasn't until G-8 that the status would change to a confirmed L). Problem set G-6 represented 
an analog problem set, using the same subject matter as was introduced in G-3, but with a lot 
of new skill requirements. That is, G-6 not only employed skills used in G-4 and G-5, but also 
introduced three new (and difficult) skills (11, 12, 13). Therefore, we predicted that Joe's 
accuracy score would be considerably less than 100%. Joe's obtained score of 14% was in line 
with the prediction, attributed to the difficulty level of these three new skills that dealt with 
the manipulation of the correction table and separation of the altimeter setting into component 
parts. The new skills were designated N. The final problem set in this cluster, G-14, utilized 
the same basic skills as the others (G-4, G-5, G-6), but was situated in a completely new 
context — the Maximum Allowable Crosswind chart. All of G-14's requisite skills had 
received L's (by forward propagation) except for one new skill (25 = U). So, given that there 
was just one new skill introduced in G-14, and it represented an analog to earlier problem sets, 
we predicted that Joe would score slightly less than 100% on G-14. In fact, Joe scored 75%, 
so skill 25 was designated N. While there were no other problem sets in the tutor requiring 
skill 25, the posttest contained six items that did, so this skill status should be predictive later 
on. 

The remaining problem sets were similarly analyzed. In summary, the skills classified for 
Joe as learned (L) were: 1, 2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 15, 17, and 18. The only skill 
classified as tentatively learned (L?) was skill 5. Skills classified as not learned (N) included 
skills: 11, 12, 15, 22, 23, 24, and 25. Finally, skills that had an unknown (U) status (from a 
lack of information) were: 19,20, and 21. This represented Joe's knowledge state at the end of 
the Graph section of the tutor. However, he still had to complete the TOLD section of the 
tutor before taking the posttest, and that would give him additional practice on these 
component skills. Thus, skill status changes could transpire during TOLD learning, where N's 
and U's could change to L's or N's. Because we consider only the Graph data in this paper, our 
predictions will be less precise than if the TOLD data were also included in the equation. 

Modeling Posttest Performance. In order to predict posttest performance from within- 
tutor performance data, we first needed to link the 25 unique skills, outlined in Table 2, to 
each posttest item. That mapping resulted in a binary matrix consisting of 46 posttest items by 
25 skills (similar to Table 2, only larger, and using posttest, rather than problem set, data). 

To illustrate, posttest item 1 required a single skill ~ reading data from a straight-line 
graph (skill 10). We had assigned an L status to Joe's skill 10, so we predicted that he would 
get this item correct, and he did. On the other hand, Joe had performed poorly on problem set 
G-6 (14%). Thus, we predicted that he would fail on any posttest item that required skills 
classified as "not learned" (N) from that problem set (i.e., skills 11 and 12). Our prediction 
was supported: Joe incorrectly solved both posttest items that involved the unlearned skills. 
One of these items asked: 

IF YOU WANT TO KNOW THE PRESSURE ALTITUDE AND ARE GIVEN THE STATION PRESSURE 
(ALTIMETER SETTING) AS 850 MILLIBARS, THE NEXT STEP IN THE PROCEDURE IS TO: 

(a) Find correction value to pressure altitude (d) Convert field elevation to feet 
(b) Convert millibars to inches of Mercury (e) Subtract correction value from field elevation 
(c) Add correction value to field elevation (f) Add station pressure to correction value 



The correct answer for this item was (b), but Joe incorrectly selected (e), clearly 
demonstrating that he confused the sequence of steps in this particular procedure. Next, we 
tested another skill which had been designated as L - Skill 14 (RWD). We examined all five 
posttest items that involved skill 14. Joe answered 4 of the 5 relevant items correctly, showing 
that he really seemed to comprehend "relative wind direction." The one item that he failed to 
answer correctly involved not only RWD, but also Wind Type (skill 15), a skill he had not 
learned (i.e., classified as N). This confounded item asked: 

IN DETERMINING WIND TYPE, YOU MUST CALCULATE THE RELATIVE WIND DIRECTION. YOU ARE 
GIVEN THE WIND DIRECTION, BUT ALSO NEED THE: 

(a) Polar coordinate chart (d) Runway heading 
(b) Wind velocity (e) True altitude 
(c) Gust increment (f) Altimeter setting 

Joe selected response (b) indicating that he misinterpreted the question to be addressing wind 
component issues. That is, for wind components, you need to know the relative wind direction 
as well as wind velocity, which is the answer that he erroneously chose. The correct answer to 
this item, however, is (d) runway heading. Thus, we were correct in designating skill 14 as L 
and skill 15 asN. 

Finally, we analyzed the ambiguous-status skills classified .as U (e.g., skill 20 — 
Normalizing RWD) to see whether these skills were really L or N (remember, the "U" status 
simply means unknown). Skill 20 was needed in the solution of three posttest items. Joe 
answered all of those items correctly, so we can infer that he did understand when and how to 
normalize the RWD. The probable reason this skill was assigned a U status was that Joe had 
shown difficulties solving problems requiring this skill during the Graph section of the tutor, 
seen in his less-than-perfect accuracy data on relevant problem sets (G-ll through G-13). 
However, this skill was also exercised during the TOLD section of the tutor, so he probably 
"learned" skill 20 at that time. 

We are currently in the process of assigning differential weights for skills in terms of 
their relative importance, within and across problem sets. This weighting scheme will allow 
us to predict, probabilistically and more precisely, whether a subject will respond to a given 
problem (i.e., tutor or posttest) correctly or not based on: (a) whether the person unequivocally 
knew the relevant skills or not, and (b) the weighted importance of each skill to that item. For 
items requiring just one skill, if the skill was designated L, then the prediction for the item 
would simply be "correct." If the skill status was N, then we would predict "incorrect," and if 
U, then it could go either way. For other items containing more than one skill, we need to 
employ a more complex decision rule including the weights in the equation. 

Discussion 

In summary, we examined relations among practice, performance, and learning outcome using 
an intelligent tutoring system instructing flight engineering knowledge and skills. We created 
two contrasting practice conditions from the tutor: one extended (fairly typical), and one 
greatly shortened. While some of the findings were expected (e.g., the Abbreviated group 
required significantly less time to complete the tutor compared to the Extended group), other 
findings were completely unexpected (there were no significant differences between the two 
groups on any of the outcome measures ~ accuracy or latency). In an attempt to account for 
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the unexpected findings, we first established (through item analysis, correlations, and so on) 
that the posttest was a reliable measure of acquired flight engineering knowledge and skills. 

Next, we looked at practice effects on within-tutor performance data to see if there were 
any significant group differences that may have obscured (i.e., attenuated) outcome 
differences. Schmidt and Bjork (1992) have argued that differences between groups that show 
up during the acquisition phase may reflect either differences in learning or performance (or 
both). Furthermore, variations on the practice schedule (e.g., random, reduced, massed, or 
variable practice) often degrade performance during practice, relative to more ideal 
conditions. This was demonstrated in our study: wherever significant differences between 
groups emerged, subjects in the Abbreviated condition performed worse than subjects in the 
Extended condition. While the Abbreviated group did perform worse during acquisition (on 
the harder problem sets), their data suggest that they may have compensated for having so few 
problems by devoting more time per problem. Furthermore, they were actively engaged in the 
learning process, transferring new knowledge and skills across successive problem sets to the 
same degree as the Extended group. Finally, both groups' learning curves were quite 
predictable. For example, if a new and difficult skill was introduced in some problem set, then 
subjects' learning latencies and errors incremented by the same relative degree, per group. Or, 
if a problem set required subjects to apply some previously learned skill, latencies and errors 
would comparably decrement. 

Our simple modeling procedure described in this paper provides a formalism for 
predicting transfer. In general, vertical transfer is expected to occur where subjects have 
demonstrated they know certain skills. For example, we predicted that Joe would acquire 
problem set 2 fairly easily given that (a) this problem set involved skills 1 - 4, and (b) he had 
demonstrated mastery of these requisite skills. Our prediction was upheld. But a person's skill 
designated as "learned" does not guarantee that the individual will always apply it correctly in 
the solution of novel problems. Nor does a skill designated as "not learned" guarantee that the 
person will answer relevant problems involving that skill incorrectly. The important point is 
that if we can predict transfer, then we may be approaching an understanding of transfer 
mechanisms. An understanding of transfer mechanisms will allow us to capitalize on the 
mechanisms in operational settings, such as for: (1) predicting transfer among jobs by 
capitalizing on a person's incoming knowledge and skills; and (2) optimizing re-training 
programs. 

These findings suggest several important implications for the design of automated 
instruction, particularly for the teaching of complex skills where practice opportunities are 
important. Traditionally, it has been accepted that practice makes perfect, and more practice is 
better than less practice. In contrast, these results clearly show that in certain cases, with 
regard to practice opportunities, enough is enough. By adopting a policy of iterative pilot 
testing, developers can avoid unnecessary time and effort in providing too many practice 
opportunities. Such a policy would also avoid investing too much of the students' time in 
accomplishing unnecessary practice opportunities. Undue tedium during training almost 
certainly has other negative consequences as well (e.g., generalized loss of motivation, 
reduced time for other training needs, increased wash-out rate). 

Among the more novel implications of these findings is the possibility that students of 
automated instruction may actually self-regulate their practice behavior to some degree. In 
this study, students who received fewer practice opportunities spent more time per problem 
than students given greater practice opportunities. It is unclear whether this represents a 
voluntary decision to allocate additional resources by the Abbreviated group, a function of 
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their making more errors, or a little of both. In any event, this result supports conventional 
wisdom among trainers that motivated students will learn regardless of how deficient the 
training is. It does not, however, negate the fact that it is possible to optimize instruction. 

We believe that the most important implications of this research derive from the 
componential skill analysis. In general, we believe it is expedient to design instruction that 
focuses on the exact component skills that make up a desired outcome performance (although 
we will take up an important exception to this rule momentarily). Rather than simply giving 
students increasing amounts of practice during training, componential skill analysis allows 
designers to systematically design practice opportunities that hierarchically and incrementally 
add to the student's repertoire of critical skill components. It is then possible to monitor the 
acquisition of these skills during automated instruction, and then control the run-time 
generation of practice opportunities by simple algorithms. Carefully designed systems can 
deliver just enough, and the right kind of, practice opportunities to produce the desired 
outcome performance, while minimizing training time. There is, however, a class of 
exceptions to the rule of only teaching desired outcome skills. Sometimes it is appropriate to 
provide tools that ease cognitive load during certain stages of training, even though these tools 
will not be available in the applied setting. For instance, mastery of high-resource component 
skills can sometimes be facilitated by providing tools to learners that reduce the cognitive load 
associated with other, currently unmastered component skills. In these cases, it has been 
shown that temporary "crutches" during training are very beneficial (Lintern & Gopher, 
1978). However, designers need to consider the added load of learning tool-specific skills, as 
well as the fact that the student will need to be carefully weaned from such tools to assure that 
the desired transfer environment (performance requirements in the applied setting) matches 
the terminal practice environment (the end-of-training performance requirements). 

Early in this paper, we cited a common finding, "When the number or variety of example 
problems is restricted, skill acquisition tends to be rapid, but transfer tends to be weak." In our 
data, we documented the rapidity, but not the weakness. Abbreviated subjects finished the 
tutor significantly faster than the Extended subjects, but the two groups attained the same 
degree of transfer performance for both vertical (within-tutor) and lateral (outcome) transfer. 
In conclusion, these data suggest that for even this complex material, if the curriculum is 
developed in a hierarchical manner, based on (and requiring mastery of) hierarchical skills 
which have been decomposed via a careful task analysis, even a minimum number of practice 
opportunities may suffice. 
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Appendix 1: Listing of Skills for all Problem Sets of the Tutor - Graph Section 

Scale conversion Problems: 
G-l (Converting C° to F° and F° to C°), Accuracy: ±2 degrees 
Skill 1: Find given value on conversion scale; Skill 2: Read opposite side of scale for equivalent value (temp); 
Skill 3: Interpolate/determine value; Skill 4: Input (converted) value. 

G-2 (Converting C° to F° and F° to C°), Accuracy: ±1 degree 
Skill 1: Find given value on conversion scale; Skill 2: Read to opposite side of scale for equivalent value (temp); 
Skill 3: Interpolate/determine value; Skill 4: Input (converted) value. 

G-3 (Converting Millibars to In. Hg), ANALOG PROBLEM (to G-l, G-2), Accuracy: ±1 in. Hg 
Skill 5: Concept: altimeter setting; Skill 1: Find given value on conversion scale; Skill 2: Read to opposite side 
of scale for equivalent value (In. Hg); Skill 3: Interpolate/determine value; Skill 4: Input (converted) value; 

Using Cartesian Coordinate Grid: 
G-4 (Plotting x, y coordinates), Accuracy: ±1 degree 
Skill 6: Cartesian Coordinate chart; Skill 7: Use vertical ruler (to draw line on x-axis from given x coordinate); 
Skill 8: Use horizontal ruler (to draw line on y-axis from given y coordinate); Skill 3: Interpolate/determine 
value (between marked values of x- and y-axis); Skill 9: Plot point at intersection (of horiz. and vert, lines). 

G-5 (Using straight-line graph to convert C° and F° temperatures), Accuracy: ±1 degree 
Skill 6: Cartesian Coordinate chart; Skill 10: Concept: Straight-line graph (linear relation between scales); Skill 
7 (or 8): Use vertical/horizontal ruler (to intersect straight-line at given x- or y-coordinate); Skill 8 (or 7): Use 
opposite ruler (to draw line from straight-line to axis); Skill 3: Interpolate/determine value (from intersection of 
line with axis); Skill 4: Input (converted) value. 

G-6 (Plotting x, y coordinates), ANALOG PROBLEM (to G-4, G-5), Complete accuracy 
Skill 5: Concept: altimeter setting; Skill 11: Correction table (correcting pressure altitude); Skill 12: Separate 
altimeter setting into x & y coordinates (1st 3 digits = y-axis; 4th digit = x-axis); Skill 7: Use vertical ruler 
(button on x- axis to highlight column); Skill 8: Use horizontal ruler (button on y- axis to highlight row); Skill 9: 
Plot point at intersection (of column and row); Skill 4: Input (correction) value; Skill 13: Compute value 
(pressure altitude = field elevation + correction value); Skill 4: Input (computed) value. 

G-14 (Determining maximum allowable XW), Accuracy: ±1 knot 
Skill 6: Cartesian Coordinate Grid; Skill 10: Straight-line graph; Skill 7: Use vertical ruler (to intersect straight- 
line at given x coordinate/GW of aircraft); Skill 25: Locate given RCR on chart; Skill 8: Use horizontal ruler (to 
draw line from straight-line to axis); Skill 3: Interpolate/determine value (where horizontal line intersects y- 
axis/Max Allowable XW; Skill 4: Input (Max XW) value. 

Using Polar Coordinate Chart: 
G-l (Computing Relative Wind Direction - RWD, determining wind type), Complete accuracy 
Skill 14: Concept: RWD; Skill 13: Compute value (RWD = |wind direction-runway heading|); Skill 4: Input 
(computed) value; Skill 15: Determine wind type (according to rules); Skill 4: Input (wind type) value. 

G-8 (Plotting x, y coord's), Accuracy: ±1 degree 
Skill 16: Polar Coordinate Chart; Skill 3: Interpolate/determine value (corresponding to given RWD value); Skill 
17: Plot vector (corresponding to given RWD value); Skill 18: Locate arc on PCC; Skill 9: Plot point at 
intersection (of RWD angle & wind velocity arc). 

G-9 (Computing RWD, plotting x, y coord's), Accuracy: ±1 degree 
Skill 16: Polar Coordinate Chart; Skill 14: Concept: RWD; Skill 13: Compute value (RWD); Skill 4: Input 
(computed) value; Skill 3: Interpolate/determine value (corresponding to computed RWD value); Skill 17: Plot 
vector (corresponding to computed RWD value); Skill 18: Locate arc on PCC; Skill 9: Plot point at intersection 
(of RWD angle & wind velocity arc). 
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G-10 (Normalizing RWD, plotting coord's on quartered PCC), Accuracy: ±1 degree 
Skill 16: Polar Coordinate Chart; Skill 19: Quartered symmetrical PCC (folded in 1/2 and 1/4); Skill 20: 
Concept: normalizing RWD; Skill 13: Compute value (normalized RWD); Skill 4: Input (computed) value; Skill 
3: Interpolate/determine value (RWD vector); Skill 21: Draw new vector on quartered PCC (between marked 
rays); Skill 17: Plot vector (corresponding to normalized RWD value); Skill 18: Locate arc on PCC; Skill 9: Plot 
point at intersection (of RWD angle & wind velocity arc). 

Using Wind Components Chart. 
G-l 1 (Determining HW component), Accuracy: ±1 knot 
Skill 22: Wind Component Chart (PCC + Cartesian); Skill 6: Cartesian Coordinate chart; Skill 19: Quartered 
PCC (folded in 1/2 and 1/4); Skill 23: Gust Element (Add it to wind velocity for TWs & XWs, but not HWs); 
Skill 14: Concept: RWD; Skill 13: Compute value (RWD); Skill 4: Input (computed) value; Skill 20: Concept: 
normalizing RWD; Skill 13: Compute value (normalized RWD); Skill 4: Input (computed) value; Skill 3 
Interpolate/determine value (RWD vector); Skill 21: Draw new vector on PCC (between marked rays); Skill 17 
Plot vector (corresponding to normalized RWD value); Skill 18: Locate arc on PCC; Skill 9: Plot point at 
intersection (of RWD angle & wind velocity arc); Skill 24: Extraction location (HW & TW comp.'s from y-axis, 
XW comp. from x-axis); Skill 8: Use horizontal ruler (to draw line from vector to y-axis);  Skill 3: 
Interpolate/determine (HW component) value; Skill 4: Input (HW component) value. 

G-12 (Determining XW component), Accuracy: ±1 knot 
Skill 22: Wind Component Chart (PCC + Cartesian); Skill 6: Cartesian Coordinate chart; Skill 19: Quartered 
PCC (folded in 1/2 and 1/4); Skill 14: Concept: RWD; Skill 13: Compute value (RWD); Skill 4: Input 
(computed) value; Skill 20: Concept: normalizing RWD; Skill 13: Compute value (normalized RWD); Skill 4: 
Input (computed) value; Skill 3: Interpolate/determine value (RWD vector); Skill 21: Draw new vector on PCC 
(between marked rays); Skill 17: Plot vector (corresponding to normalized RWD value); Skill 23: Gust Element 
(Add it to wind velocity for TWs & XWs, but not HWs); Skill 13: Compute value (wind velocity + gust 
increment); Skill 18: Locate arc on PCC; Skill 9: Plot point at intersection (of RWD angle & wind velocity arc); 
Skill 24: Extract XW comp. from x-axis; Skill 7: Use vertical ruler (to draw line from vector to axis); Skill 3: 
Interpolate/determine (XW component) value; Skill 4: Input (XW component) value. 

G-l3 (Determining TW component), Accuracy: ±1 knot 
Skill 22: Wind Component Chart (PCC + Cartesian); Skill 6: Cartesian Coordinate chart; Skill 19: Quartered 
PCC (folded in 1/2 and 1/4); Skill 14: Concept: RWD; Skill 13: Compute value (RWD); Skill 4: Input 
(computed) value; Skill 20: Concept: normalizing RWD; Skill 13: Compute value (normalized RWD); Skill 4: 
Input (computed) value; Skill 3: Interpolate/determine value (RWD vector); Skill 21: Draw new vector on PCC 
(between marked rays); Skill 17: Plot vector (corresponding to normalized RWD value); Skill 23: Gust Element 
(Add it to wind velocity for TWs & XWs, but not HWs); Skill 13: Compute value (wind velocity + gust 
increment); Skill 18: Locate arc on PCC; Skill 9: Plot point at intersection (of RWD angle & wind velocity arc); 
Skill 24: Extract TW comp. from y-axis; Skill 8: Use horizontal ruler (to draw line from vector to y-axis); Skill 
3: Interpolate/determine (XW component) value; Skill 4: Input (TW component) value. 
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